16. LAPLACE TRANSFORM

The Laplace Transform is a powerful mathematical tool used to convert a time-domain function into a frequency-domain function. It makes solving differential equations easier by converting them into algebraic equations.

Definition of Laplace Transform

If f(t) is a function defined for t ≥ 0, then the Laplace Transform is:

L{f(t)} = F(s) = ∫₀^∞ e⁻ˢᵗ f(t) dt

Conditions for Existence

  • Function must be of exponential order.
  • Function must be piecewise continuous.

Standard Laplace Transforms

  • L{1} = 1/s
  • L{tⁿ} = n!/sⁿ⁺¹
  • L{eᵃᵗ} = 1/(s − a)
  • L{sin at} = a/(s² + a²)
  • L{cos at} = s/(s² + a²)
  • L{sinh at} = a/(s² − a²)
  • L{cosh at} = s/(s² − a²)
  • L{eᵃᵗ sin bt} = b / [(s − a)² + b²]
  • L{eᵃᵗ cos bt} = (s − a) / [(s − a)² + b²]

Linearity Property

L{af(t) + bg(t)} = aF(s) + bG(s)

First Shifting Theorem

If L{f(t)} = F(s), then:

L{eᵃᵗ f(t)} = F(s − a)

Second Shifting Theorem

If f(t) is multiplied by a step function u(t − a):

L{f(t − a) u(t − a)} = e⁻ᵃˢ F(s)

Laplace Transform of Derivatives

L{f′(t)} = sF(s) − f(0)

L{f″(t)} = s²F(s) − s f(0) − f′(0)

Laplace Transform of Integrals

L{∫₀ᵗ f(τ) dτ} = F(s)/s

Inverse Laplace Transform

The inverse Laplace Transform is used to get back f(t) from its transform F(s).

L⁻¹{F(s)} = f(t)

Standard Inverse Laplace Transforms

  • L⁻¹{1/s} = 1
  • L⁻¹{1/s²} = t
  • L⁻¹{n!/sⁿ⁺¹} = tⁿ
  • L⁻¹{1/(s − a)} = eᵃᵗ
  • L⁻¹{s/(s² + a²)} = cos at
  • L⁻¹{a/(s² + a²)} = sin at

Unit Step Function (Heaviside Function)

u(t − a) = 0 for t < a and 1 for t ≥ a.

Transform

L{u(t − a)} = e⁻ᵃˢ/s

Convolution Theorem

(f * g)(t) = ∫₀ᵗ f(τ) g(t − τ) dτ

L{f * g} = F(s) G(s)

Partial Fractions Method (Important for Inverse Laplace)

Used when F(s) is a rational function. Split it into simpler fractions and apply known inverse transforms.

Example Type

F(s) = 5/(s² + 4s + 5)

Convert denominator to completed square and apply inverse Laplace rules.

Solving Differential Equations Using Laplace Transform

  1. Take Laplace transform of both sides.
  2. Use derivative property.
  3. Solve algebraic equation in F(s).
  4. Apply inverse Laplace to get final solution.

Applications

  • Electrical circuits (RLC circuits)
  • Mechanical vibrations
  • Chemical kinetics
  • Pharmacokinetic models
  • Control systems

Examples (Concept Overview)

  • Laplace transform of sin 3t, cos 5t, e⁴ᵗ
  • Inverse Laplace using partial fractions
  • Using first shifting theorem
  • Solving DE like y″ + 3y′ + 2y = 5 using Laplace

Practice Questions

  • Find L{t³}
  • Find L⁻¹{1/(s² + 9)}
  • Find L{eᵗ sin 2t}
  • Use partial fractions to find inverse Laplace of 6/(s² + s)
  • Solve y′ + 4y = e⁻ᵗ using Laplace transform

Easy-to-understand notes on Laplace Transform for exams and revision.

Detailed Notes:

For PDF style full-color notes, open the complete study material below:

Share your love